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Outline

* Using deep learning to nowcast convective phenomena
* Hail
* Convective initiation
* Updraft strength

ai2es.org amcgovern@ou.edu



OFFICIAL

Gridded Severe Hail Nowcasting
Using 3D U-Nets, Lightning
Observations, and the Warn-on-

ai2es.org
Forecast System
Tobias G. Schmidt, Amy McGovern, John T. Allen, Corey % iEﬁ'.L'.!..&!:
K. Potvin, Randy J. Chase, Chad M. Wiley, William R The @
McGovern-Fagg, Montgomery L. Flora, Cameron R. mmmu Coare Company

Homeyer, John K. Williams HvERSITY

Accepted with major revisions to Weather and Forecasting

A/ - 4 % A < ¥
Y%%@suncu Au0°°€v§° e T i Re STO"&\%
°
ai2es.org



OFFICIAL

Motivation

* Hail causes billions of dollars of damage
annually

* Hail is too small to be resolved in
current NWP models

* Research questions:

e Can we use Al to improve hail nowcasting
in the 0-60 min window?

e Can we develop an approach that could
scale globally?

* Can we combine NWP predictions with
observations to improve real-time ,,
predictions? | A i probity n 100 ki 10k are deys pr yeor
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Approach B

* Train a deep learning method to
combine NWP output with
observations to predict hail in A
CONUS i

D Run: 17 v

2085 UTC <[] »

- \ .
"\__7‘ o }

* Input data:

* NSSL's Warn on Forecast system
» Vaisala’s global lightning observations

e Ground truth: GridRad MESH
* Deep learning method: 3D U-net

Ens. Mean 2 m Temperature ('F)
Comp. Refl.: Paintballs >40 dBZ and Prob. Matched Mean
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StUdy domain WoFS Domains 2017-2021

_ —1 nghtnlng Data Bounds
* WOFS runs during the US | ~
spring spring season ' |

e High resolution (3x3 km

gridcells, 5-minute time
intervals)

e Rapidly incorporates assimilated
real-time observations

 Domain moves each day to focus
on area of highest severe
weather probabilities

* Lightning data limited
* Training and testing restricted to | .
inside this area SRR TR

ai2es.org amcgovern@ou.edu



OFFICIAL

U-net architecture

Architecture of Our Best 3D UNet
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Output

T+ 15 mins T+ 15 mins

T+ 10 mins T+ 10 mins
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U-net architecture: handling time

Dataset Timings for Each Sample
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Objective verification
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Objective verification
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Case study: May 18, 2017
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Case study: May 18, 2017
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May 18, 2017

e = Severe Hail, % = SigniﬁcariSevere Ha”il
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Current and future work on hail nowcasting

e Results are very promising

e Student leading this work graduated with his MS and went to private
industry

e Paper accepted with major revisions and under review again now

* Our long-term goal is to extend this (or a similar) approach globally
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Using Deep Learning to Improve
the Warn-On-Forecast System
Prediction of Thunderstorm

Location

Chad Wiley, Montgomery Flora, Corey Potvin, Randy
Chase, Tobias Schmidt, Brian Matilla, and Amy

McGovern
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OFFICIAL Ens. Prob. of Comp. Refl. > 40 dBZ (15km Neig

Motivation

e Accurate convective initiation

forecasts are important for a wide
variety of impacts
* Convective-Induced Turbulence
(CIT) is responsible for about 60%
of turbulence related aircraft

accidents (Corman and Carmichael,
1993)

e Public outdoor safety

* WoFS has a strong over-
forecasting bias for Cl
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Approach

* MRMS and WoFS input to a U-net
* Training data is MRMS > 40 dBz 30 min in future
e Qutput probability of convection

MRMS >40dBz ?
: Va
w u': :‘\’lﬁ o
e ; s
;s e
. s
Valid : t=0 Vlarl‘i: ::go {
|MRMS | l WoOFS Output I J
| | Valid t=30
EXAMPLES TARGET
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Comparison method

WoFS Ensemble Probabilities Gaussian Filter 2 Max Filter 2, Gaussian Filter 2

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05

Probability
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Objective performance
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Case study: South Dakota storm

0230 UTC 21 May 2021
MRMS at Init DL Model

DL MODEL WOoFS BASELINE
[JMax Prob : 0.75 [IMax Prob : 1.00
[JCSl: 0.32 []CSI: 0.03
(BS: 0.27 [1BS: 0.63
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Case study: Southeastern Texas

0300 UTC 19 May 2021
MRMS at Init DL Model WoFS aeie
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Case study: Nebraska-South Dakota

0230 UTC 22 May 2021

MRMS at Init DL Model WOoFS Baseline
Y “« - c) “=e Ve

DL MODEL WoFS BASELINE
[IMax Prob : 0.79 [JMax Prob : 1.00
[Csl: 0.12 [CSI: 0.23
0BS: 0.35 BS: 0.27
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Looking inside the model

* MRMS Composite Reflectivity at Feature Importance

MRMS Comp. Reflectivity

initialization was the most s B o, Com. it
i m p O rt a nt V a ri a b I e WOFS Ens. 90th Percentile Comp. Reflectivity

WoFS Ens. Maximum Comp. Reflectivity

WOoFS Ens. Maximum Updraft Velocity -I

* WoFS composite reflectivity
products were also important ———

Variable

WOoFS Ens. Maximum Downdraft Velocity

Ens. 10th Percentile Downdraft Velocity A

 Environmental variables were
n Ot i m po rta nt Ens. 90th Percentile Updraft Velocity

Ens. Avg. SFC CIN 4
Ens. Avg. Updraft Velocity 4

Ens. Avg. Downdraft Velocity

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Backwards Single Pass Score
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Current and future work on Cli

* Deep learning U-Nets were able to substantially increase skill and
discrimination of a 30-minute forecast of reflectivity values >= 40 dBZ
* MaxCSl on testing dataset was raised from 0.17 to 0.27

* MRMS Composite Reflectivity greatly impacted the performance and
helped in cases of poorly initialized storms

e Student leading this work also graduated and went to private industry
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Machine learning estimation of
storm updrafts

ai2es.org

Randy J. Chase, Kayla Hoffman, Dan Stechman,
Cameron Homeyer, Corey Potvin and Amy McGovern
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https://doi.org/10.1175/AIES-D-23-0095.1

OFFICIAL

Estimating Vertical Velocity from Radar

The NEXRAD system is Y T
underutilized (e.g., most only use
low level scans)

* Physics retrievals of updrafts (i.e.,
multi-dop) are costly, baselines are
not good and low level data is
often missing

 CAMs can provide updraft info but
are also unavailable in real-time

* Can we use Al/ML to estimate
updrafts in real-time?
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Case study: WoFS evaluation April 30 2019
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Case study: Eastern Colorado 26 May 2017
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NSF Al Institute for Research on
Trustworthy Al in Weather, Climate, and
Coastal Oceanography (AI2ES)

AI2ES is developing novel, physically based Al techniques that are
demonstrated to be trustworthy, and will directly improve prediction,
understanding, and communication of high-impact weather and
climate hazards, directly improving climate resiliency.
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