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Outline

• Using deep learning to nowcast convective phenomena 
• Hail

• Convective initiation

• Updraft strength 
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Gridded Severe Hail Nowcasting 
Using 3D U-Nets, Lightning 
Observations, and the Warn-on-
Forecast System

Tobias G. Schmidt, Amy McGovern, John T. Allen, Corey 
K. Potvin, Randy J. Chase, Chad M. Wiley, William R 
McGovern-Fagg, Montgomery L. Flora, Cameron R. 
Homeyer, John K. Williams

Accepted with major revisions to Weather and Forecasting
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Motivation

• Hail causes billions of dollars of damage 
annually

• Hail is too small to be resolved in 
current NWP models

• Research questions:
• Can we use AI to improve hail nowcasting 

in the 0-60 min window?
• Can we develop an approach that could 

scale globally?
• Can we combine NWP predictions with 

observations to improve real-time 
predictions?
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https://doi.org/10.1016/j.wace.2018.10.004 
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Approach

• Train a deep learning method to 
combine NWP output with 
observations to predict hail in 
CONUS
• Input data: 

• NSSL’s Warn on Forecast system

• Vaisala’s global lightning observations

• Ground truth: GridRad MESH

• Deep learning method: 3D U-net
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Study domain

• WoFS runs during the US 
spring spring season
• High resolution (3x3 km 

gridcells, 5-minute time 
intervals)

• Rapidly incorporates assimilated 
real-time observations

• Domain moves each day to focus 
on area of highest severe 
weather probabilities

• Lightning data limited
• Training and testing restricted to 

inside this area
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U-net architecture
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U-net architecture: handling time
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U-net architecture: handling time
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Objective verification
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Objective verification
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Case study: May 18, 2017
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Case study: May 18, 2017
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Current and future work on hail nowcasting

• Results are very promising

• Student leading this work graduated with his MS and went to private 
industry

• Paper accepted with major revisions and under review again now

• Our long-term goal is to extend this (or a similar) approach globally
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Using Deep Learning to Improve 
the Warn-On-Forecast System 
Prediction of Thunderstorm 
Location

Chad Wiley, Montgomery Flora, Corey Potvin, Randy 
Chase, Tobias Schmidt, Brian Matilla, and Amy 
McGovern
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Motivation

• Accurate convective initiation 
forecasts are important for a wide 
variety of impacts
• Convective-Induced Turbulence 

(CIT) is responsible for about 60% 
of turbulence related aircraft 
accidents (Corman and Carmichael, 
1993)

• Public outdoor safety

• WoFS has a strong over-
forecasting bias for CI
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Approach

• MRMS and WoFS input to a U-net

• Training data is MRMS > 40 dBz 30 min in future

• Output probability of convection
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Comparison method
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Objective performance
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Case study: South Dakota storm 
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Case study: Southeastern Texas
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Case study: Nebraska-South Dakota
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Looking inside the model

• MRMS Composite Reflectivity at 
initialization was the most 
important variable

• WoFS composite reflectivity 
products were also important

• Environmental variables were 
not important
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Current and future work on CI

• Deep learning U-Nets were able to substantially increase skill and 
discrimination of a 30-minute forecast of reflectivity values >= 40 dBZ
• MaxCSI on testing dataset was raised from 0.17 to 0.27

• MRMS Composite Reflectivity greatly impacted the performance and 
helped in cases of poorly initialized storms

• Student leading this work also graduated and went to private industry
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Machine learning estimation of 
storm updrafts

Randy J. Chase, Kayla Hoffman, Dan Stechman, 
Cameron Homeyer, Corey Potvin and Amy McGovern
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Chase, R. J., A. McGovern, C. R. Homeyer, P. J. Marinescu, and C. K. Potvin, 2024: Machine Learning 

Estimation of Maximum Vertical Velocity from Radar. Artif. Intell. Earth Syst., 3, 

230095, https://doi.org/10.1175/AIES-D-23-0095.1.

https://doi.org/10.1175/AIES-D-23-0095.1
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Estimating Vertical Velocity from Radar

• The NEXRAD system is 
underutilized (e.g., most only use 
low level scans) 

• Physics retrievals of updrafts (i.e., 
multi-dop) are costly, baselines are 
not good and low level data is 
often missing

• CAMs can provide updraft info but 
are also unavailable in real-time

• Can we use AI/ML to estimate 
updrafts in real-time?

amcgovern@ou.edu 26



ai2es.org

OFFICIAL

OFFICIAL

Approach
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• U-net trained on WoFS to predict distribution of values
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Case study: WoFS evaluation April 30 2019 
TX

amcgovern@ou.edu 28



ai2es.org

OFFICIAL

OFFICIAL

Case study: Eastern Colorado 26 May 2017

• Estimates from 
ML are close to 
the observed 
retrieved data

• Strong promise of 
ML to do this in 
real-time

• Now let’s use this 
data to improve 
understanding of 
storm evolution

amcgovern@ou.edu 29



ai2es.org

OFFICIAL

OFFICIAL

NSF AI Institute for Research on 
Trustworthy AI in Weather, Climate, and 
Coastal Oceanography (AI2ES)
AI2ES is developing novel, physically based AI techniques that are 
demonstrated to be trustworthy, and will directly improve prediction, 
understanding, and communication of high-impact weather and 
climate hazards, directly improving climate resiliency.

This material is based upon work supported by the 
National Science Foundation under Grant No. ICER-

2019758
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